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Abstract

An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let Hn =
{(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric
n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair
Sn = (G, σ) (Sn = (G,µ)), where G = (V,E) is a graph called the underlying graph
of Sn and σ : E → Hn (µ : V → Hn) is a function. In this paper, we introduced
a new notion distance coprime symmetric n-sigraph of a symmetric n-sigraph and
its properties are obtained. Also, we obtained the structural characterization of
distance coprime symmetric n-signed graphs.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory

the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Let n ≥ 1 be an integer. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of

all symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication,

and the order of Hn is 2m, where m = dn2 e.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ)

(Sn = (G,µ)), where G = (V,E) is a graph called the underlying graph of Sn and

σ : E → Hn (µ : V → Hn) is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric

n-tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, ..., an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it is

a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity

n-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product

of the n-tuples on the edges of A.

In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows

(See also R. Rangarajan and P.S.K.Reddy [3]):

Definition : Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is

the identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [7].

Theorem 1.1 (E. Sampathkumar et al. [7]) : An n-sigraph Sn = (G, σ) is i-

balanced if, and only if, it is possible to assign n-tuples to its vertices such that the

n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph

Sn = (G, σ) as follows: (See also [2], [4-6], [9-19]).

Let Sn = (G, σ) and S′n = (G′, σ′), be two n-sigraphs. Then Sn and S′n are said to be

isomorphic, if there exists an isomorphism φ : G→ G′ such that if uv is an edge in Sn

with label (a1, a2, ..., an) then φ(u)φ(v) is an edge in S′n with label (a1, a2, ..., an).
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Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is

the operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). The n-

sigraph obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph

or just switched n-sigraph.

Further, an n-sigraph Sn switches to n-sigraph S′n (or that they are switching equivalent

to each other), written as Sn ∼ S′n, whenever there exists an n-marking of Sn such that

Sµ(Sn) ∼= S′n.

Two n-sigraphs Sn = (G, σ) and S′n = (G′, σ′) are said to be cycle isomorphic, if there

exists an isomorphism φ : G → G′ such that the n-tuple σ(C) of every cycle C in Sn

equals to the n-tuple σ(φ(C)) in S′n.

We make use of the following known result (see [7]).

Theorem 1.2 (E. Sampathkumar et al. [7]) : Given a graph G, any two n-sigraphs

with G as underlying graph are switching equivalent if, and only if, they are cycle

isomorphic.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of S defined as

follows: each vertex v ∈ V , µ(v) is the product of the n-tuples on the edges incident

at v. Complement of S is an n-sigraph Sn = (G, σ′), where for any edge e = uv ∈ G,

σ′(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to Theo-

rem 1.1.

2. Distance Coprime n-Sigraph of an n-Sigraph

Let G = (V,E) be a graph with |V | = p and |E| = q. The shortest path P in G is said

to be distance coprime path, if gcd(l(P ), q) = 1, where l(P ) denotes the length path P .

Let G = (V,E) be a graph with |V | = p and |E| = q. The distance coprime graph

DCP(G) of G = (V,E) is a graph with V (DCP(G)) = V (G) and any two vertices u

and v in DCP(G) are joined by an edge if there exists a distance coprime path between

them in G. This concept were introduced by Suganya and Nagarajan [20].

Motivated by the existing definition of complement of an n-sigraph, we extend the

notion of distance coprime graphs to n-sigraphs as follows: The distance coprime n-

sigraph DCP(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose underlying graph is

DCP(G) and the n-tuple of any edge uv is DCP(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called distance coprime n-sigraph,
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if Sn ∼= DCP(S′n) for some n-sigraph S′n. The following result indicates the limitations

of the notion DCP(Sn) as introduced above, since the entire class of i-unbalanced n-

sigraphs is forbidden to be distance coprime n-sigraphs.

Theorem 2.1 : For any n-sigraph Sn = (G, σ), its distance coprime n-sigraph DCP(Sn)

is i-balanced.

Proof : Since the n-tuple of any edge uv in DCP(Sn) is µ(u)µ(v), where µ is the

canonical n-marking of Sn, by Theorem 1.1, DCP(Sn) is i-balanced. 2

For any positive integer k, the kth iterated distance coprime n-sigraph DCP(Sn) of Sn

is defined as follows:

(DCP)0(Sn) = Sn, (DCP)k(Sn) = DCP((DCP)k−1(Sn)).

Corollary 2.2 : For any n-sigraph Sn = (G, σ) and any positive integer k, (DCP)k(Sn)

is i-balanced.

The following result characterize n-sigraphs which are distance coprime n-sigraphs.

Theorem 2.3 : An n-sigraph Sn = (G, σ) is a distance coprime n-sigraph if, and only

if, Sn is i-balanced n-sigraph and its underlying graph G is a distance coprime graph.

Proof : Suppose that Sn is i-balanced and G is a DCP(G). Then there exists a graph

H such that DCP(H) ∼= G. Since Sn is i-balanced, by Theorem 1.1, there exists an

n-marking µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider

the n-sigraph S′n = (H,σ′), where for any edge e in H, σ′(e) is the n-marking of the

corresponding vertex in G. Then clearly, DCP(S′n) ∼= Sn. Hence Sn is a distance

coprime n-sigraph.

Conversely, suppose that Sn = (G, σ) is a distance coprime n-sigraph. Then there exists

an n-sigraph S′n = (H,σ′) such that DCP(S′n) ∼= Sn. Hence G is the DCP(G) of H and

by Theorem 2.1, Sn is i-balanced. 2

In [20], the authors characterizes the graphs such that G and DCP(G) are isomorphic.

Theorem 2.4 : Let G = (V,E) be a graph with |V | = p and |E| = q, where q is a

composite number. Then G and DCP(G) are isomorphic if and only if the diameter of

G is less than or equal to c2 − 1, where c2 is the second coprime of q.

In view of the above, we have the following result:

Theorem 2.5 : For any n-sigraph Sn = (G, σ) with |V | = p and |E| = q, where q is

a composite number. Then Sn and DCP(Sn) are cycle isomorphic if and only if Sn is
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i-balanced and the diameter of G is less than or equal to c2 − 1, where c2 is the second

coprime of q.

Proof : Suppose DCP(Sn) ∼ Sn. This implies, DCP(G) ∼= G and hence by Theorem

2.4, we see that the diameter of G is less than or equal to c2− 1, where c2 is the second

coprime of q. Now, if S is any n-sigraph with diameter of G is less than or equal to

c2 − 1, where c2 is the second coprime of q. Then DCP(Sn) is i-balanced and hence if

Sn is i-unbalanced and its distance coprime n-sigraph DCP(Sn) being i-balanced can

not be switching equivalent to Sn in accordance with Theorem 1.2. Therefore, Sn must

be i-balanced.

Conversely, suppose that S balanced signed graph with the underlying graph G satisfies

the conditions of Theorem 2.4. Since DCP(S) is balanced as per Theorem 2.1, the result

follows from Theorem 1.2 again. 2

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges

have signs (a sigraph) in the more general context of graphs with multiple signs on their

edges. We look at two kinds of complementation: complementing some or all of the

signs, and reversing the order of the signs on each edge.

For any m ∈ Hn, the m-complement of a = (a1, a2, ..., an) is: am = am. For any

M ⊆ Hn, and m ∈ Hn, the m-complement of M is Mm = {am : a ∈M}.

For any m ∈ Hn, the m-complement of an n-sigraph Sn = (G, σ), written (Smn ), is the

same graph but with each edge label a = (a1, a2, ..., an) replaced by am.

For an n-sigraph Sn = (G, σ), the DCP(Sn) is i-balanced. We now examine, the condi-

tion under which m-complement of DCP(Sn) is i-balanced, where for any m ∈ Hn.

Theorem 3.1 : Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if DCP(G)

is bipartite then (DCP(Sn))m is i-balanced.

Proof : Since, by Theorem 2.1, DCP(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the

number of n-tuples on any cycle C in DCP(Sn) whose kth co-ordinate are − is even.

Also, since DCP(G) is bipartite, all cycles have even length; thus, for each k, 1 ≤ k ≤ n,

the number of n-tuples on any cycle C in DCP(Sn) whose kth co-ordinate are + is also

even. This implies that the same thing is true in any m-complement, where for any

m,∈ Hn. Hence (DCP(Sn))t is i-balanced. 2
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4. Conclusion

We have introduced a new notion for n-signed graphs called distance coprime n-sigraph

of an n-signed graph. We have proved some results and presented the structural char-

acterization of distance coprime n-signed graph. There is no structural characterization

of distance coprime graph, but we have obtained the structural characterization of dis-

tance coprime n-signed graph.
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